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Abstract—The non-linear differential equations of motion, and boundary conditions, for Euler-
Bernoulli beams able to experience flexure along two principal directions (and. thus, flexure in any
direction in space), torsion and extension are formulated. The beam’s material is assumed to be
Hookean but its properties may vary along its span. The nonlinearities present in the differential
equations include contributions from the curvature expression and from inertia terms. A set of
differential equations with polynomial nonlinearities to cubic order, suitable for a perturbation
analysis of the motion, is also developed and the validity of the inextensional approximation is
assessed. The equations developed here reduce to those for an inextensional beam. In Part IT of this
paper. a specific example of application is analyzed and the results obtained are compared with
those available in the literature where several non-linear terms have been neglected @ priori.

INTRODUCTION

Many important engincering structures can be modcled as a slender member, beam-like,
continuous system. Unless external constraints are imposed to restrict their motion, such
structures are able to undergo flexure in any direction in space, torsion and extension. For
“small” motions, it is very common to lincarize the differential equations of motion of the
system in order to predict its response to external excitations. In the lincarization process,
the bending curvatures of the clement are approximated as the second spatial derivatives
of its clastic bending deflections. Well-known uncoupled dilTerential equations of motion
are then obtained. For finite motions, such equations may yield a very poor approximation
for the system’s response. They may even yield results that are completely erroncous, for
the nonlincarities may play an essential role in determining the system’s response. To
address such problems, it is then essential to devote special attention to the formulation of
the non-lincar differential equations of motion of such systems and to determine under
which conditions the nonlincarities in the equations can significantly affect the motion.

It is common practice to approximate fixed-sliding or fixed-free elements as inex-
tensional members. The non-lincar differential equations describing the flexural-flexural-
torsional dynamics of such clements were formulated previously (Crespo da Silva and
Glynn, 1978a). Those equations are valid for arbitrary stiffness and mass variations along
the beam’s span. They are also valid for the general case where the bending motions are of
the sume order as the torsional motion. A number of cases involving the non-lincar non-
planar free and foreed response of inextensional beams when the torsional natural fre-
quencies are much higher than the bending natural frequencies have been analyzed (Crespo
da Silva and Glynn, 1978b, 19794, b ; Crespo da Silva, 1978a, b, 1980a, b). The non-planar
motions of extensional beams were considered by Ho, Scott and Eisley (1975, 1976) by
making use of a set of differential equations where the bending curvature was linearized
and torsion was neglected. It has been common practice in the literature to neglect a number
of nonlincaritics in the equations of motion of extensional beams such as non-lincar
contributions to the curvature and other gcometric nonlincaritics (Abdel-Rohman and
Nayfch, 1987 ; Nayfch, 1973, 1984 ; Nayfch, Mook and Lobitz, 1974a; Tezak, Mook and
Nayfch, 1978).

From a fundamentally rigorous point of view. the incxtensional assumption and the
differential equations of motion for fixed-sliding or for fixed-fixed boundary conditions
should be a by-product of a unificd approach that trcats both extensional and inextensional
systems. Onc then could assess the validity of neglecting non-linear terms, such as higher
order contributions to the bending curvatures and the torsion terms, when analyzing the
non-lincar response of such systems.
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In this paper the differential equations of motion and boundary conditions for Euler-
Bernoulli extensional beams. suitable for a perturbation analysis of the non-linear flexural-
flexural-torsional motions of either extensional or inextensional beams are derived in a
unified and mathematically consistent manner. In the formulation developed here, it is
assumed that the strains are small and that the material is Hookean. Thus, the nonlinearities
in the differential equations of motion are geometric, such as those due to higher order
terms in the expressions for the beam curvature vector and inertial terms. The differential
equations of motion are formulated in Part [ of this work. In Part I, a specific analysis of
the response of a beam is analyzed and the effect of the different nonlinearities in the
differential equations of motion are assessed. The equations obtained in Part [ and the
results obtained in Part Il are compared with other work presented in the literature for
more restricted situations, and the validity of several assumptions that are “usually” made
for inextensional beams is discussed.

Hamiltons's extended principle is used in the formulation presented here and. thus,
both the non-linear differential equations of motion and the boundary condition equations
are obtained. These equations are valid for arbitrarily large motions. From these equations,
a set of differential equations where all the nonlinearities are expanded to order ¢, where ¢
is an arbitrary parameter that is used for “"bookkeeping purposes™ only, are then developed.
The latter equations are then suitable for a perturbation analysis of the flexural-flexural-
torsional-extensional motions of the beam with arbitrary stiffness variation. This extends
the work presented previously (Crespo da Silva and Glynn, 1978a) and unifies it with the
work on extensional beams that has appeared in the literature to date. The Computerized
Symbolic Manipulator MACSYMA (Rand, 1984) is used to perform most of the “al-
gebraic™ steps in this paper.

KINEMATICS

Consider an initially straight undeformed thin beam of length L, with arbitrary bound-
ary conditions, mass m per unit length and of closed cross section. Figure | shows a beam
segment before and after deformation. Before deformation, the length of an infinitesimal
segment MN along a reference line of the beam (which defines the inertial direction x shown
in Fig. 1) is dx. After deformation, points M and N move to M* and N*, respectively, and
the length of the segment M*N* is dr. The unit vectors ¥ and 2 are inertial and normal to
X. Let the components, along (%, §, 3), of the clastic deformation at point M* be denoted
by u(x, 1), v(x. ) and w(x, 1), respectively, where ¢ is time. The orthogonal axes (S.4.¢)
centered at M* and with unit vectors (£, 4. ) are tixed to the beam’s cross section normal
to the reference line at M*. When the beum is undeformed the triad (&, 4. ) is aligned with
(X. 1. 3).

<

dx

e A

Fig. [. Beam scgment before and after deformation. and unit vector triads.
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Fig. 2. Rotational sequence used to describe the orientation of the cross section axes (§.n,{).

The orientation of the cross section axes (. n.¢) relative to the reference axes (x. y, =
may be described by three successive rotations. There are a total of 24 different sets of
rotational sequences to describe the orientation of a body in space (Kane, Likins and
Levinson, 1983). The diflerential equations of motion obtained for each of these 24
sequences, although “different looking™, are equivalent to cach other since the angles for
cach sequence can be related to the angles for the remaining 23 sequences by a non-linear
transformation. Here (as in Crespo da Silva and Glynn (1978a)), the three-axes sequence
(0..0,.0)) shown in Fig. 2 is used to describe the orientation of the (€, n,{) axes in space.
The relations between the elastic deflections of the reference point M* and the orientation
angles 0, and 0, are relatively simple for that sequence. Starting by aligning the triads
(€10 and (£, §. 3). the first rotation 0, about 2 takes (€, 4.0 to (£,.4,.£, = ). The sccond
rotation 0, about 4, takes (£,,4,.8)) to (619, = #,.{,) and the final rotation 0, about &,
takes (&1.4,. &) to its final orientation (& = &,,4,0). For the sake of clarity, each of the
three individual rotations are shown in Fig. 1. The orientation of segment M*N* after cach
rotation is also shown in that figure. By letting primes denote partial differentiation with
respect to x, it is readily seen that the no-shear assumption implies the following relations
between the orientation angles 8. and 0, and the spatial derivatives of the displacements of
point M*:

tan 0. = v’/(1 +u) (1a)
tun 0, = —w'/J((1+u') +1"%). (1b)

Also, the clongation ¢, £ Or/éx—1 of the reference line at M* is obtained as

eo = JU+0) +0 24w =1, (1c)

To obtain the differential equations of motion for the beam, the expression for the
absolute angular velocity @ of the axis system (&, 4, {) fixed to the cross section is needed.
By letting dots denote partial differentiation with respect to time, the following expression is
obtained by inspection of Fig. 2 (the symbol £ used here denotes “equal to by definition™) :

o=0:+04,+0¢
= (0,—0. sin 0,)+ (0, cos 0, sin 0, +40, cos 0,5
+(0. cos 0, cos 0,~0, sin 0,)¢

a (I):E""(U,,'i +ﬂ);:. (Za)

SAS 24:12-0
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Similarly, one can also obtain for C = 8’3 +9}ri.+0;§. which is needed to generate the
expression for the strain components

C = (0,—9. sin ,)3+(8. cos 0, sin 8, +8, cos 6,)7
+ (8. cos 8, cos 8, —0, sin 0,)¢
& C.E+ChH+CEL (2b)

The strains at any point P* of the beam’s cross section are obtained from the expressions
for the position vectors of P* before and after deformation. Before deformation, the position
vector of P* = P is simply

rp = XX+ni-+HE2 (3a)

Neglecting in-plane cross section distortion and shear. point P* experiences a small axial
displacement relative to M* due to warping. With this displacement given as £(n.0)C.¢,
where f(n.{) is obtained by solving Laplace’s equation for the cross section (Timoshenko
and Goodier, 1970 Shames and Dym, 1985}, the position vector of P* is then

rpe = {x+ W)X +r+witni+ X+ C.fn. C)E (3b)

Using Green's strain measure (Shames and Dym, 1985 ; Annigeri, Cassenti and Dennis,
1985), onc can define the strain components ¢, in terms of the undeformed coordinates as

dx
drpe sdrpe —drp drp = 2[dv.dnp dl) (e dyp | G = xon.0) (4)
dg

where

drpe = [(1+ W) S0P+ w3 dy+4 dyp+C d
+C:{(2f 7o) dn+ (@100 d+C® i+ +Cof (. OHE dx. (5)

In eqn (5) ® denotes the cross product.
From eqns (3a). (4) and (5). the struain components &,,, &, & and &, are obtained as
given in eqns (6a)-(6d)

b = {(1+€*) =L+ [(1 =/ C)* +(fC;=’ICi}/2 (6a)
£ = [(1+€*) &f [On+/fC.—(]C /2 (6b)
£ = [(1+€*) &/ +n—fC,]C/2 (6¢)
e = (@[OS 12)CE 2 (6d)

where

e* = ridx—14+{C,~nC; = ea+{C,—nC.,
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EQUATIONS OF MOTION

The differential equations of motion for the beam can be obtained from a vectorial
approach, by using Newton's second law, or, equivalently, from a variational approach by
using Hamilton's principle. The use of either approach has often been a matter of preference.
Here the variational approach is used to obtain the equations of motion and the general
expression for the boundary conditions associated with them. Letting Q, denote the gener-
alized forces associated with the virtual displacements dx (2 = w.v.w,0,), T and U denote,
respectively, the specific (i.e. per unit length) kinetic and strain energies associated with the
motion, and é ¥ denotes the virtual work associated with forces applied at the boundaries
at x = 0 or L, the extended form of Hamilton's principle (Meirovitch, 1967) then yields

4

8l = J‘t: fL , [H(T-UN+Q, Su+Q, ov+Q, dw+Q, 00, dx dt+j :5WB dt =0.
F=ty Jo= fy
(7
The specific kinetic energy of motion is given as
T= ;J‘j“ p{drpefde) < {drp./de) dy ¢ dx
1 (o2 et et g 2 T
=, J:[ P+ W oy =)+ (7 67wk
+ X+ 65+ D) - [, -:]w;)f — L h +qm;fl} dy dC dx (8)

where p = p(n. . x) is the material density at point P, and A is the arca of the cross section
at M (Fig. 1),
If the (&, 4. §) axes are chosen to he the principal axes of inertia of the cross section at
X = v, and centered at the cross section’s center of mass, the expression for the specific
kinctic energy is reduced to the simpler form
T=m(i®+2 432+ (j.o! +j,,m,f +j;w;: )2 9

where the distributed mass m(x) and the distributed mass moments of inertia j,(x)
(2 = &, n,8) are given as

m(x) = JJ pO1.¢.x) dy d¢
4

Julx) = J J. TSy dn dSs jio) = ”. npn.{.x) dn dg;
4 A
Jo(x) = j,(x) + j:(x). (10a-d)
Neglecting the normal stress components o, and a.., and making usc of engincering
strains, the specific strain energy is approximated as

1
Ux :,J-J: [0otn+ 20,80 +0:8,.+06,:6.:)] dn d¢. (1)

Here it is assumed that the strains are infinitesimally small so that the lincar stress—
strain relationship for the material is valid. Thus, neglecting the Poisson effect, one has
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6. E*,.0,=G*%,(i=n.0.0, =G*,. where E*(n...x) and G*(n.{. x) are, respec-
tively, Young's and shear moduli for the material. Material nonlinearities are not considered
here and. consistent with linear elasticity and the engineering approximations implicit in
eqn (11). the engineering strains are obtained by neglecting non-linear higher order terms
in eqns (6a)-(6d). These approximations have been recently addressed by Danielson and
Hodges (1987) and by Bauchau and Hong (1988). Here eqns (6a)-(6d) are linearized in the
elongation e*. In addition, the axial displacement due to warping—and, thus, the function
f(n.¢) and its derivatives—is assumed to be infinitesimally small so that eqns (6a)-(6d) are
also linearized in f(5.{) and its derivatives. Furthermore. the terms f C, and f C; are also
neglected in those equations. This is equivalent to accounting for the effect of warping oaly
in the calculation of the torsional stiffness of the beam (Hodges and Dowell, 1974) and
approximating &, and ¢,; by their dominant terms. With these simplifications, the engineer-
ing strains obtained from eqns (6) are then

£ X €+ (17 +{7)CE2 (12a)
£ = (f/On—0)C/2 (12b)
& 2 (f/+mCJ/2 (12¢)
£, = 0. (12d)

Making use of cgns (12a)-(12d). the expression for the specific strain energy then becomes
U= {Edei+D,C]+D.CI+[D; +eo(D,+ DICE 2+ {ea(e.Cy—e,C) —e,.C,C: )

+ {i(’ J‘J‘l E*QCC,=nCH* + ) dy &+ 4C? Jfl E*(* +0%)° dy d;} (3
where

rr
[E(x) = E*(n,5.x) dnp dg/A(x),  A(v) = Jj dn d¢
A A

D,(x) = E**dydi. D.(x) = Jf E*y’ dn dg
A A

o 4

A

D.(x)= |1 G*(y+f1e0) +(C—&f o)) dy d
{

AR,

e:(x) = E*Xdy dg, e (x) = JJ E*nydy dS
A E

o o

re

e (x) = E*n dn d¢. (14a~h)
4

o o

D,, D. and D, are, respectively, the bending and torsional stiffnesses of the beam. For
beams where Young's modulus is only a function of x, £* = E(x) in eqn (13). Also, if the
material density along the beam is only a function of x. the mass center and the arca
centroid of the cross section at x = v coincide with each other. For this case, all the terms
in the second bracketed group in eqn (13) vanish since ¢; = ¢, = ¢,; = 0. The terms in the
third bracketed group in eqn (13) involve higher order area cross section integrals and
their contribution to the differential equations of motion are neglected. For uniform and
inextensional beams, where £* = E(x). p = p(x) and ¢, = 0, the expression for the strain
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energy given by eqn (13) reduces to the simple form given previously (Crespo da Silva and
Glynn, 1978a).

By taking the variations of the kinetic and strain energies given by eqns (9) and (13),
and by integrating by parts some of the terms resulting from eqn (7). the differential
equations of motion for the beam can be put in the same form as those given previously
{Crespo da Silva and Glynn, 1978a) as

G, = [4, CO./cu'+ A, O, /¢u' + A1 +u)] = mii~Q, (15a)
G, =[d) é0./¢a' + Ay CO/CH+ X =mi—-Q, (x=1r,w) (15b,¢)
AQ}\ - Qu‘ (ISd)
where
;- = EA(.’()/(I‘*“(’{)) (|6a)

and, with{ = T—=U+ Edel/?

& 0 Il
A e = (2= 0.,0,.0,). 16b-d
it + Cx'Ox Cx ( =05 00) ( )
For inextensional beams, 4 stands for a Lagrange multiplier which can be determined as
iltustrated previously (Crespo da Silva and Glynn, 1978b).

The terms that are integrated by parts in eqn (7) yicld the following boundary condition
cyuation ;

of
[0{;} O, G, u—~G,0v~G, 0w+ H, o'+ H, 30"+ H, w +0 WB] =0 (i=0,L)

X

(17a,b)
where

o ol o, o o0,

P = lﬁ): D‘xj ;’i): (_E‘; (2= u, 0, w). (|7C-€)

EQUATIONS OF MOTION EXPANDED TO O(:') NONLINEARITIES

The partial differential equations, eqns (15a)-(15d) are nonlinear and coupled. They
are valid for arbitrarily large deformations as long as the stresses in the material are lincarly
related to the engineering strains. To be able to analyze the motion by perturbation
techniques, the beam deformations are now restricted in magnitude so that all nonlinearities
in those equations are expuanded in Taylor serics about an equilibrium solution which is
here taken to be w=v¢ = w =0, = 0. This can be accomplished by first expressing the
clastic deformations w, v, w and 0, in terms of a small arbitrary ordering paramcter ¢ as
2(x. 1) = ex,(x. ) (x = r,w.0)), u(x.t) = e*uy(x. 1), and then expanding eqns (15a)-(15d)
in a Taylor serics in £. We also let EA = (EA)./e so that the terms Av” and 2w’ in eqns
(13b) and (15¢) are transferred from the lincarized O(z) equations to the next higher order
approximation. The expansion of equations was donc by computer with MACSYMA
(Rand. 1984). Letting QF(x, 1) denote the expanded form of Q,(x = w, r.w. 8,), and drop-
ping the subscripted and starred notations for convenience, the O(:*) differential equations
of motion are obtained as given in eqns (18a)—(18d)
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G, = W (DM +e, ") +0 (D" +ew”) —jywW—jo' "+ i + O’y = mi—~Q, (18a)
G = {— (D" + e w"Y +j-8+[(Dy— D YO — 07"

=D (8, + ") + Dy +2UD.t"ey) — D't + 0™y
+ow (D, — D)W’ + [en(e, —e-0,) +e,.(20 0" +w (1 + ')
F (20 + 30724 3024 2000 — e w0 0y — et (e wY
HJ O+ W] = Uy = O = 03) =t éa =2 (Eeq)

Fj WD)+ (=)0 A+ O) = mi - Q, (18b)

-

G, = {— (DWW +e, 7Y +j, W+ (D, — DNO "+ 00"

_ 3’? “.y“‘:;: + ﬁ"{ 3,56;;}} + 28”{9}{33}:4‘ ern{g; ‘i“z'"ﬁ"} — 8: §$"£‘”:

+{ene: + e, 8] + (e, 0V ey~ [e,: 20 0" — ('Y — (077 + w4+ 200"

—2¢,. w0t w” mf':t"'((jx W+ (=)0 + 00 + 67w

=520 07 207N R 20 W N+ AV R0 = i - O, {18
Ay, = —[D (O +"W)+ Dyl iey] + (D, = D" = w" )0, — "]

+{er"—e W e+ w2 + o, { W e g =Gl ¢ W)

0w EY =i =0, =]+ O = O, (184)

where ¢ = 1+ (" +w')/2 and 4 = Ede,.

Equations (}8a)~( 18d) are valid for arbiteary property variation along the beam’s span
and for arbitrary boundary conditions. In particular, if the materind density along the beam
is only a function of x, then e, = ¢; = »,; = 0. It can be readily verified that for inextensional
beams, where #' = — ("7 +w')/2+ 0", those equations reduce to eqns (1a)~(11d) in
Crespo da Silva and Glynn (1978a). As indicated by egns (18b) and (18¢), the expression
for #’{x, 1), which cun be obtained from eqn (18a), is only needed to O(&?). The expanded
form of the functions H,. H, and H, that appear in the boundary conditions, eqns (17a)
and (17b), are also given below. To O(e'), 8120, = — D A0, +v"w')

H, = Dyw'w”+ D't + e, (e W) +0Y) 19a)

H, = — D0+ 0" w e — (D, = D" 0, = w")0, — " w' "]
~D:t" —v ey =27 ey )+ (e, —e:0 e,

e, §20 (0" + 0 ")+ [ (i + ) A w =24 3 DL+ 00 (19b)

H, = (Dy~ D:}(l‘” + 0 "), - ﬁq{“‘" — el = duteg ] + (o + "q()-c ¥u
F e 2070, —wy =07+ (Y F 0T+ 3024 3 D]+ 0. (19¢)

VALIDITY OF THE INEXTENSIONAL APPROXIMATION

The validity of the incxtensional approximation can be assessed by first integrating
eqn {18a) from v = L to x to obtain
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.2 s2
l- + w

3 )+O(£2). (20)

G.(x. 1) = G(L, t)+J‘ [mi(y,.)—Q.(y.0)] dy = EA (u'+
L
To O(e”). and with Q.(x, 1) = O(¢). eqn (20) can be solved for «'(x.?) as

wix.n = [G,,(L. t)— J‘x Q.(». 1) d}]/EA —(+w )24 0. 2n
L

To O(c?). the inextensionality condition ¢, = 0 becomes &" = —(v">+w')/2. As indi-
cated by eqn (21). the inextensionality condition is satisfied when G(L.1) =0 and
Q.(x, 1) = 0. When G,(L, ?) = 0 and the beam is subjected to a force with an x component
(Crespo da Silva. 1978a.b). the inextensionality condition is approached as EA — 0. The
limiting approach EA — oo was used by Hodges, Ormiston and Peters (1980) when con-
sidering the kinematics of a rotating beam as an example in their work on the non-linear
deformation geometry of Euler—Bernoulli beams. The condition G, (L, 1) = 0 is satisfied for
free—free, fixed—free of fixed-sliding boundaries.

CONCLUDING REMARKS

In this paper, the non-lincar differential equations of motion for Euler-Bernoulli
beams undergoing extension, flexure along two principal directions, and torsion, have been
formulated. Unlike other formulations presented in the literature, the effects of all geometric
nonlincaritics, which arise from midplane stretching, curvature and inertia terms, have been
considered. The cquations are valid for arbitrary stiffness and mass variation along the
beam's span. A sct of O(c') dilferential cquations, suitable for a perturbation analysis of
the motion, has also been developed. Here ¢ is an arbitrary perturbation parameter that is
used for “bookkeeping purposes™ only, and the flexural and torsional clastic dcformations
are tiaken to be of O(x). The equations developed here reduce to those for an inextensional
beam (Crespo da Silva and Glynn, 1978a) by tuking into account all the gecometric non-
lincarities.

REFERENCES

Abdel-Rohman, M. and Nayfeh, A, H. (1987), Active control of nonlineir oscillations in bridges. ASCE J. Engny
Mech. 113, 335 -348.

Annigeri, B. S., Cassenti, B. N, and Dennis, A, J. (1985). Kinematics of smalf and large deformations of continua.
Engng Computations 2, 247 -256.

Bauchau, O. A. and Hong, C. H. (1988). On nonlincar composite beam theory. J. Appl, Mech., ASME Truns.
88, 156163,

Crespo da Silva, M. R, M. (19784). Flexural -flexural oscilliations of Beck's column subjected to a planar harmonic
excitation. J. Sound Vibr. 60, 133 -144,

Crespo da Silva, M. R. M. (1978b). Harmonic nonlincar response of Beck's column to a lateral excitation. Ine.
J. Solids Structures 14, 987 997,

Crespo da Silvi, M. R M. (19804). Nonlinear resonances in a columa subjected to a constant end force. J. Appl.
Mech., ASME Trans. 47, 409 414,

Crespo da Silva, M. R, M. (1980b). On the whirling of a basc-excited cantilever beam. J. Acoust. Soc. Am. 67,
704 707,

Crespo da Silva, M. R, M. and Glynn, C. C. (1978a). Nonlinear flexural -flexural - torsional dynamics of inex-
tensional beams. 12 Equations of motion, J. Struct. Mech. 6, 437 448,

Crespo da Silva, M. R. M. and Glynn, C. C. (1978b). Nonlincar flexural -flexural torsional dynamics of inex-
tenasional beams, H: Foreed motions, J, Struct. Mech. 6, 449 461,

Crespo da Silva, M. R. M. and Glynn, C. C. (1979a). Nonlincar non-planar resonant oscillations in fixed-free
beams with support asymmetry. It J. Solids Structures 15, 209219,

Crespo da Silva, M. R. M. and Glynn, C. C. (1979h). Out-of-planc vibrations of a beam including nonlincar
inertia and nonlinear curvature cffects. Ine. J. Non-tincar Mech, 13, 261-271.

Daniclson, D. A. and Hodges, D. H. (1987). Nonlincar beam kinematics by decomposition of the rotation tensor.
J. Appl. Mech., ASME Trans. 54, 258 -262.

Ho. C. H.. Scott, R. A. and Eisley, J. G. (1975). Non-planar, non-lincar oscillations of a beam. 1: Forced motions.
Int. J. Non-lincur Mech. 10, 113-127,

Ho, C. H.. Scott. R. A. and Eisley. 1. G. (1976). Non-planar, non-linear oscillations of a beam. 1: Free motions.
J. Sound Vibr. 47, 333-339.



{234 M. R. M. Crespo pa Sirva

P

Hodges. D. H. and Dowell, E. H. {(1974). Nonlinear equations of motion for the elastic bending and torsion of
twisted nonuniform rotor blades. NASA TN D-7818.

Hodges. D. H.. Ormiston. R. A. and Peters, D. A. (1980}. On the nonlinear deformation geometry of Euler-
Bernoulli beams. NASA Technical Paper [566.

Kane, T. R.. Likins. P. W. and Levinson, D. A. (1983). Spacecraft Dynamics. McGraw-Hill. New York.

Meirovitch, L. (1967). Analytical Methods in Vibrations. Macmillan. London.

Nayfeh. A. H. (1973). Nonlinear transverse vibrations of beams with properties that vary across the length. J.
Acoust. Soc. Am. 83, 766-770.

Nayfeh, A. H. (1984). On the low frequency drumming of bowed structures. J. Sound +ibr. 94, S51-562.

Nayfeh, A. H., Mook. D. T. and Lobitz, D. W. (1974a). Numerical-perturbation method for the nonlinear
analysis of structural vibrations. A/4.4 J. 12, 1222-1228.

Nayfeh, A. H.. Mook, D. T. and Sridhar. S. {(1974b). Nonlinear analysis of the forced response of structural
elements. J. Acoust. Soc. Am. §8, 281-291.

Rand, R. H. (1984). Computer Algebra in Applied Mathematics : an Introduction to MACSY M A. Pitman, London.

Shames. 1. H. and Dym, C. L. (1985). Energy and Finite Element Methods in Structural Mechanics. Hemisphere,
New York.

Tezak. E. G.. Mook. D. T. and Nayfeh, A. H. (1978). Neonlinear analysis of the lateral response of columns to
peniodic loads. J. Mech. Des.. ASME Trans. 100, 651-659.

Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity. MeGraw-Hill, New York.



